教育界杂志社官网 咨询电话:0771-5567169 投稿邮箱:jyjzzs@126.com

教育论文范文--详解如何培养学生的解题能力

更新时间:2012-03-26浏览:评论: 条

如何培养学生的解题能力:

如何培养学生的解题能力?这是一个较复杂的问题。

从理论上看,解题能力涉及到逻辑学、心理学、教育学等学科的问题。

从内容上看,解题能力包括对应用题、文字题、计算题等各类问题处理的能力。

从小学生解题的行为实际看,小学生解题主要存在的问题有:NO1:难以养成思维习惯,常常盲目解题;NO2:任务观点严重,解题不求灵活简洁;NO3:马虎草率,错误百出。心理学认为:智力的核心是思维能力。

从素质教育的观点来看,发展思维、提高智力,是提高素质的重要内容。要提高学生的解题能力,首先要提高学生的智力,发展他们的思维。

下面从发展学生的思维角度和学生的解题实际出发,谈谈如何培养学生的解题能力。

NO1:1例多说,养成解题的思维习惯

语言和思维密切相关,语言是思维的外壳,也是思维的工具。语言可以促进思维的发展,反过来,良好的逻辑思维,又会引导出准确、流畅而又周密的语言。

在教学实践中,不少老师只强调“怎样解题",而忽视了“如何说题(说题意、说思路、说解法、说检验等)"。看似这是重视解题,实则这是忽略解题能力的培养。

由于缺少对解题的思维习惯、思维品质的培养,学生的解题能力,只囿于题海战术、死记硬背的机械记忆中,这与当前的素质教育格格不入。

另外,从学生解题的实际表现看,学生解题的错误,一般是由于缺乏细致、周密的逻辑思考和分析。特别是当作业量稍多时,这种表现更为突出。

从教师教学实际看,教师为了强化对学生解题思路的训练,往往要求学生在作业本上写出分析思路图,或画出线段图。但这项工作,对于小学生来说,一方面难度比较大,另一方面因费时多,学生持久性不够,往往收效并不大。

笔者认为加强课堂教学中的“说题训练",即采用“顺逆说"、“转换说"和“辩论说"等几种训练形式,养成学生解题的思维习惯,从而培养学生的解题能力。

a.1.顺逆说。

每解答一道应用题时,不必急于去求答案,而要让学生分别进行顺思考和逆思考,把解题思路及计划说出来。

比如解答“三年级种树25棵,四年级种树是三年级的2倍,四年级比三年级多种几棵?"先让学生用综合法从条件到问题依次说出思路,再让学生用分析法从问题到条件说出思路。学生顺逆分别说清思路后,再列出算式“25×2-25"。

如果,学生在说的过程中,语言还不够流畅,思路还不够清晰,还要再让学生看算式“25×2-25",再进行第二次“顺逆说":先让学生说第一步“25×2"表示什么?再让学生说第二步“25×2-25"表示什么?最后先说第二步、再说第一步。

在解答文字题时,也可进行顺逆说的训练。如“3个1/5比2个1/4多多少?列出算式“1/5×3-1/4×2"后,让学生根据算式,说出“1/5×3-1/4×2"的意义,再把说出的意义与原题对照,看看是否一致?如不一致,则要重新分析,认真检查,直到说出的意义与原题一致为止。

a.2.转换说

对于题中某一个条件或问题,要引导学生善于运用转换的思想,说成与其内容等价的另一种表达形式,使学生加深理解,从而丰富解题方法,提高解题能力。

如已知“A与B的比是3∶5",可引导学生联想说出:(1)B与A的比是5∶3;(2)A是B的3/5;(3)B是A的5/3;(4)A比B少2/5;(5)B比A多2/5;(6)A是3份,B是5份,一共是8份,等等。这样,学生解题思路就会开阔,方法就会灵活多样,从而化难为易。

a.3.辩论说。

鼓励学生有理有据的自由争辩,有利于培养学生独立思考和勇于发表不同见解的思维品质,寻找到独特的解题方法。有1次,1位老师教学解答圆面积1题时,老师问学生:“计算圆面积要知道什么条件才能进行计算?"多数学生回答“必须知道半径,才能求出圆面积。"但有1个学生

举手表示不同意,认为“知道周长或直径,同样可以计算圆面积。"对这个学生的回答,老师1方面作了肯定,另1方面要他和持不同意见的同学进行辩论。这样,双方经过几轮辩论后,使这位学生认识到“已知周长或直径,最终还是要先求出半径"的道理。另外,也使大部分同学明白了“不光只有知道半径,才能计算圆面积"的道理。

NO2:多向探索,培养解题的灵活性

求异思维是1种创造性思维。它要求学生凭借自己的知识水平能力,对某1问题从不同的角度,不同的方位去思考,创造性地解决问题。而小学生的思维是以具体形象思维为主,容易产生消极的思维定势,造成1些机械思维模式,干扰解题的准确性和灵活性。

有的学生常常将题中的两个数据随意连接,而忽视其逻辑意义。如“小方和小圆各有同样多的水果糖,小方吃了5粒,小圆吃了6粒,剩下的谁多?"由于受数值大小这1表象的干扰,学生的思维定势集中在“6>5"上,容易误判断为“小圆剩下的多"。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“1题多问"、“1题多解"和“1题多变"。

b.1.1题多问。

同1道题,同样的条件,从不同的角度出发,可以提出不同的问题。如解答“五一班有学生45人。女生占4/9,女生有多少人?"这本来是1道很简单的题目。教学中,老师往往会因学生很容易解答,而1晃而过,忽视发散思维的训练。

对于这样的题型,老师要执意求新,变换提出新的问题。如再提出如下问题:(*1*)男生有多少人?(*2*)全班有多少人?(*3*)男生比女生多多少人?(*4*)男生是女生的几倍?(*5*)女生是男生的几分之几?等等。这样,可以起到“以1当十"的教学效果。

像同1道题,老师还可以从分析上多提问,从解法上多提问,从检验上多提问,进行多问启思训练,培养学习思维的灵活性。

b.2.1题多解。

在解题时,要经常注意引导学生从不同的方面,探求解题途径,以求最佳解法。

例如“某村计划修1条长150米的路,前3天完成了计划的20%,照这样计算,完成这条路还需多少天?"首先老师要学生用多种方法解。

在学生没有学习工程问题时,解法1般集中在以下3种上:①(150-150×20%)÷(150×20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。

针对这些解法,老师要善于引导学生比较3种方法的异同点,总结出“3种方法中都运用了全程150米"这1条件的共性。针对这1共性,老师可打破思维定势,启迪学生的新思维:“假如把150米当作1条路(用1来表示),还可以怎样解答?"这1点拨,学生很容易发现如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)。

综上6种解法,显然后3种解法(尤其是解法⑥),列式简洁,想象丰富,充分可以显示学生思维的灵活性。

b.3.1题多变。

小学生解题时,往往受解题动机的影响,因局部感知而干扰整体的认识。例如:“某商厦共有6层,每两层间的板梯长5米,从1楼到6楼共要走多少米?"往往由于“每两层5米"和“6层"与学生的解题动机发生共鸣,忽视了“6层只有5段间距"这1特点,而容易得出“5×6"的错解。要消除类似的干扰,就必须进行1些1题多变的训练。

针对解题模式的干扰进行变题训练。如学生学习了工程问题后,求合做工作时间,容易形成这样1种解题模式“1÷(1/A+1/B)"。我们可将条件中的时间改变成分数形式。如“1项工作,甲独做1/2小时完成,乙独做1/4小时完成,如两人合做要多少小时完成?"如

老师不提醒,学生绝大多数会把“1/2小时"和“1/4小时"当作工效,仍然列出算式“1÷(1/2+1/4)"来解答(实践统计,第1次这样的错误率在75%以上)。

又如学生学过等分除法应用题后,往往见“分成几份"就“用除法计算"。在学生掌握等份除法计算方法后,也要注意变题训练。如设计类似题“6粒水果糖分成3份,最少的1份是多少粒?"可淡化消极的“6÷3"思维定势的干扰。因为“6÷3"计算错了,其实最少的1份是1粒(题中并没有要求平均分)。

通常,教学中的变条件、变问题、条件和问题的互换等,都是1题多变的好形式,但是,变题训练要掌握1个原则,就是要在学生较牢固的掌握法则、公式的基础上,进行变题形练。否则,将淡化思维定势的积极作用,不利于学生牢固地掌握知识。

NO3:联系对比,提高解题的准确率

为了减少学生的解题错误,提高解题的准确率,除加强估算和检验外,通常较有效的办法是要善于联系对比,让学生在比较中认识、在比较中区别、在比较中理解、在比较中提高。常用的联系比较方法有:

c.1.联系生活实际对比。

对于1些农业生产上的株距、行距,工业上的产值、工效,商业上的成本、利润等,学生缺乏生活经验,难以产生共鸣;对于1些较大数字的4则运算,学生解答毅力不强,容易产生畏难情绪。加之,有些教师讲到应用题,便说应用题怎样重要,如何难学,上课要认真呀……说到计算题,又说怎样容易出错,计算时要怎样细心,否则……看似老师提醒学生重视,实则给学生增加了心理压力,背上了思想包袱。其实,只要把数学题与学生的生活实际联系起来进行对比,解题并不是1件很难的事情。

对于难理解的题,要增添1些与之数量关系相同,能贴近学生生活的实例,先解熟悉的题,再解生疏的题。如要解答:“某专业户要种1块300平方米的果树,行距2米、棵距1米,种完这块地要多少棵树苗?"可首先补充另1题:“在1块300平方米的操场上站队做操,每两排纵队之间相距2米,前后两人之间相距1米,按这样站队,站满这个操场1共要多少人?"因两题思路相通,解法相同,先解贴近学生生活的补充题,再解原题,迁移自然,默化易成。

c.2.联系正误对比。

有比较才有鉴别,学生解题的错误,往往错在认识不清、感知模糊、理解肤浅上,用给出正确答案(或算式)和错误答案(或算式)的对比如正误分析对比、正误解法对比等,都有利于加强学生辩证思维训练,有利于提高解题能力。通常的选择题就是很好的训练形式。

c.3.联系题型对比。

在小学数学题型中,归纳起来,不外乎是概念题、计算题、文字题、应用题和图式题等几大类。像计算式题、文字题、应用题、图式题大都是实际生活中的例子,只是用四种不同的描述形式表达而已。

比如“6个苹果吃了2个,还有几个?"除用这种“应用题"的形式描述外,还可以用最简单的算式“6-2=?"来描述,也可以用1句话“6减2的差是多少?"或1幅线段图(或实物图)来描述。

根据这种知识内在的联系特点,在教学中,要善于把各种描述的形式,联系起来,进行训练,达到由此及彼,由里及外,融汇贯通和举1反3的效果。

培养解题能力的途径和方法很多,但无论哪种途径和方法,最根本的、相通的是离不开思维的训练。


 

    奇速优客
    奇速优客
    奇速诗文阅读
    奇速思维导图
    奇速中高考